Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.645
Filtrar
1.
Front Immunol ; 15: 1380641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601144

RESUMO

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Assuntos
Subpopulações de Linfócitos B , Camundongos , Animais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B , Cadeias Leves de Imunoglobulina/genética , Translocação Genética , Imunoglobulina M , Contagem de Células
2.
Clin Exp Immunol ; 215(1): 65-78, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37638717

RESUMO

Chronic inflammatory demyelinating polyneuropathy (CIDP), a common and treatable autoimmune neuropathy, is frequently misdiagnosed. The aim of this study is to evaluate the relationship between immunological markers and clinical outcome measures in a mixed cohort of patients with typical CIDP and CIDP variants at different disease stages. Twenty-three typical, 16 multifocal and five distal CIDP patients were included. Twenty-five sex and age-matched healthy controls and 12 patients with Charcot-Marie-Tooth type 1A (CMT1A) disease served as controls. Peripheral B-cell populations were analyzed by flow cytometry. IL6, IL10, TNFA mRNA and mir-21, mir-146a, and mir-155-5p expression levels were evaluated by real-time polymerase chain reaction in peripheral blood mononuclear cells (PBMC) and/or skin biopsy specimens. Results were then assessed for a possible association with clinical disability scores and intraepidermal nerve fiber densities (IENFD) in the distal leg. We detected a significant reduction in naive B cells (P ≤ 0.001), plasma cells (P ≤ 0.001) and regulatory B cells (P < 0.05), and an elevation in switched memory B cells (P ≤ 0.001) in CIDP compared to healthy controls. CMT1A and CIDP patients had comparable B-cell subset distribution. CIDP cases had significantly higher TNFA and IL10 gene expression levels in PBMC compared to healthy controls (P < 0.05 and P ≤ 0.01, respectively). IENFDs in the distal leg showed a moderate negative correlation with switched memory B-cell ratios (r = -0.51, P < 0.05) and a moderate positive correlation with plasma cell ratios (r = 0.46, P < 0.05). INCAT sum scores showed a moderate positive correlation with IL6 gene expression levels in PBMC (r = 0.54, P < 0.05). Altered B-cell homeostasis and IL10 and TNFA gene expression levels imply chronic antigen exposure and overactivity in the humoral immune system, and seem to be a common pathological pathway in both typical CIDP and CIDP variants.


Assuntos
Subpopulações de Linfócitos B , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/genética , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Leucócitos Mononucleares/metabolismo , Citocinas/genética , Subpopulações de Linfócitos B/metabolismo , Interleucina-10/genética , Interleucina-6/genética
3.
Nat Commun ; 14(1): 5116, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612319

RESUMO

During B cell maturation, transitional and mature B cells acquire cell-intrinsic features that determine their ability to exit quiescence and mount effective immune responses. Here we use label-free proteomics to quantify the proteome of B cell subsets from the mouse spleen and map the differential expression of environmental sensing, transcription, and translation initiation factors that define cellular identity and function. Cross-examination of the full-length transcriptome and proteome identifies mRNAs related to B cell activation and antibody secretion that are not accompanied by detection of the encoded proteins. In addition, proteomic data further suggests that the translational repressor PDCD4 restrains B cell responses, in particular those from marginal zone B cells, to a T-cell independent antigen. In summary, our molecular characterization of B cell maturation presents a valuable resource to further explore the mechanisms underpinning the specialized functions of B cell subsets, and suggest the presence of 'poised' mRNAs that enable expedited B cell responses.


Assuntos
Subpopulações de Linfócitos B , Linfócitos B , Linfócitos B/citologia , Linfócitos B/metabolismo , Proteoma , Transcriptoma , Animais , Camundongos , Diferenciação Celular , Fatores de Transcrição/metabolismo , RNA Mensageiro , Biossíntese de Proteínas , Subpopulações de Linfócitos B/metabolismo
4.
Cell Rep ; 42(6): 112630, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37300833

RESUMO

Although therapeutic B cell depletion dramatically resolves inflammation in many diseases in which antibodies appear not to play a central role, distinct extrafollicular pathogenic B cell subsets that accumulate in disease lesions have hitherto not been identified. The circulating immunoglobulin D (IgD)-CD27-CXCR5-CD11c+ DN2 B cell subset has been previously studied in some autoimmune diseases. A distinct IgD-CD27-CXCR5-CD11c- DN3 B cell subset accumulates in the blood both in IgG4-related disease, an autoimmune disease in which inflammation and fibrosis can be reversed by B cell depletion, and in severe COVID-19. These DN3 B cells prominently accumulate in the end organs of IgG4-related disease and in lung lesions in COVID-19, and double-negative B cells prominently cluster with CD4+ T cells in these lesions. Extrafollicular DN3 B cells may participate in tissue inflammation and fibrosis in autoimmune fibrotic diseases, as well as in COVID-19.


Assuntos
Subpopulações de Linfócitos B , COVID-19 , Doença Relacionada a Imunoglobulina G4 , Humanos , Fibrose , Imunoglobulina D , Inflamação , Receptores CXCR5 , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia
5.
Cell Mol Immunol ; 20(8): 881-894, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291237

RESUMO

Autoantibodies produced by B cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). However, both the cellular source of antiphospholipid antibodies and their contributions to the development of lupus nephritis (LN) remain largely unclear. Here, we report a pathogenic role of anti-phosphatidylserine (PS) autoantibodies in the development of LN. Elevated serum PS-specific IgG levels were measured in model mice and SLE patients, especially in those with LN. PS-specific IgG accumulation was found in the kidney biopsies of LN patients. Both transfer of SLE PS-specific IgG and PS immunization triggered lupus-like glomerular immune complex deposition in recipient mice. ELISPOT analysis identified B1a cells as the main cell type that secretes PS-specific IgG in both lupus model mice and patients. Adoptive transfer of PS-specific B1a cells accelerated the PS-specific autoimmune response and renal damage in recipient lupus model mice, whereas depletion of B1a cells attenuated lupus progression. In culture, PS-specific B1a cells were significantly expanded upon treatment with chromatin components, while blockade of TLR signal cascades by DNase I digestion and inhibitory ODN 2088 or R406 treatment profoundly abrogated chromatin-induced PS-specific IgG secretion by lupus B1a cells. Thus, our study has demonstrated that the anti-PS autoantibodies produced by B1 cells contribute to lupus nephritis development. Our findings that blockade of the TLR/Syk signaling cascade inhibits PS-specific B1-cell expansion provide new insights into lupus pathogenesis and may facilitate the development of novel therapeutic targets for the treatment of LN in SLE.


Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Camundongos , Animais , Subpopulações de Linfócitos B/metabolismo , Autoanticorpos , Anticorpos Antifosfolipídeos , Cromatina , Imunoglobulina G
6.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240453

RESUMO

Calcium (Ca2+) flux acts as a central signaling pathway in B cells, and its alterations are associated with autoimmune dysregulation and B-cell malignancies. We standardized a flow-cytometry-based method using various stimuli to investigate the Ca2+ flux characteristics of circulating human B lymphocytes from healthy individuals. We found that different activating agents trigger distinct Ca2+ flux responses and that B-cell subsets show specific developmental-stage dependent Ca2+ flux response patterns. Naive B cells responded with a more substantial Ca2+ flux to B cell receptor (BCR) stimulation than memory B cells. Non-switched memory cells responded to anti-IgD stimulation with a naive-like Ca2+ flux pattern, whereas their anti-IgM response was memory-like. Peripheral antibody-secreting cells retained their IgG responsivity but showed reduced Ca2+ responses upon activation, indicating their loss of dependence on Ca2+ signaling. Ca2+ flux is a relevant functional test for B cells, and its alterations could provide insight into pathological B-cell activation development.


Assuntos
Subpopulações de Linfócitos B , Linfócitos B , Humanos , Subpopulações de Linfócitos B/metabolismo , Células Produtoras de Anticorpos , Receptores de Antígenos de Linfócitos B/metabolismo , Diferenciação Celular
7.
J Microbiol Immunol Infect ; 56(4): 729-738, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37080839

RESUMO

BACKGROUND: Reactive lymphadenopathies such as toxoplasmosis and cytomegalovirus lymphadenitis are associated with monocytoid cell proliferation. Monocytoid cells are B-lymphocytes with an undetermined subset. METHODS: Using digital spatial profiling whole transcriptome analyses, this study compared monocytoid and control B-cells. The B-cell subset of monocytoid cells was assigned according to gene expression profiles. RESULTS: This study identified 466 differentially expressed genes between monocytoid and control B-cells. The cellular deconvolution algorithm identified monocytoid cells as memory B-cells instead of as naïve B-cells. A comparison of the upregulated genes revealed that atypical memory B-cells had the largest number of genes overlapping with monocytoid cells compared with other memory B-cell subsets. Atypical memory B-cell markers, namely TBX21 (T-bet), FCRL4 (IRTA1), and ITGAX (CD11c), were all upregulated in monocytoid cells. Similar to atypical memory B-cells, monocytoid cells exhibited (1) upregulated transcription factors (TBX21, TOX), (2) upregulated genes associated with B-cell inhibition (FCRL5, FCRL4) and downregulated genes associated with B-cell activation (PIK3CG, NFKB1A, CD40), (3) downregulated cell cycle-related genes (CDK6, MYC), and (4) downregulated cytokine receptors (IL4R). This study also analyzed the expression of monocytoid cell signature genes in various memory B-cell subsets. Atypical memory B-cells exhibited a gene expression pattern similar to that of monocytoid cells, but other memory B-cell subsets did not. Furthermore, monocytoid cells and marginal zone lymphomas differed in gene expression profiles. CONCLUSION: Spatial transcriptomic analyses indicated that monocytoid cells may be atypical memory B-cells.


Assuntos
Subpopulações de Linfócitos B , Linfoma de Zona Marginal Tipo Células B , Humanos , Linfonodos/patologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Linfoma de Zona Marginal Tipo Células B/genética , Linfoma de Zona Marginal Tipo Células B/metabolismo , Linfoma de Zona Marginal Tipo Células B/patologia , Proliferação de Células
8.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768658

RESUMO

B cells have emerged as an important immune cell type that can be targeted for therapy in multiple sclerosis (MS). Depleting B cells with anti-CD20 antibodies is effective in treating MS. Yet, atacicept treatment, which blocks B-cell Activating Factor (BAFF) and A Proliferation-Inducing Ligand (APRIL), two cytokines important for B cell development and function, paradoxically increases disease activity in MS patients. The reason behind the failure of atacicept is not well understood. The stark differences in clinical outcomes with these therapies demonstrate that B cells have both inflammatory and anti-inflammatory functions in MS. In this review, we summarize the importance of B cells in MS and discuss the different B cell subsets that perform inflammatory and anti-inflammatory functions and how therapies modulate B cell functions in MS patients. Additionally, we discuss the potential anti-inflammatory functions of BAFF and APRIL on MS disease.


Assuntos
Subpopulações de Linfócitos B , Esclerose Múltipla , Humanos , Linfócitos B , Subpopulações de Linfócitos B/metabolismo , Citocinas/uso terapêutico , Fator Ativador de Células B/metabolismo
9.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(2): 172-178, 2023 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-36854694

RESUMO

OBJECTIVES: To investigate the change in the distribution of memory B cell subsets in children with frequently relapsing nephrotic syndrome (FRNS) during the course of the disease. METHODS: A total of 35 children with primary nephrotic syndrome (PNS) who attended the Department of Pediatrics of the Affiliated Hospital of Xuzhou Medical University from October 2020 to October 2021 were enrolled as subjects in this prospective study. According to the response to glucocorticoid (GC) therapy and frequency of recurrence, the children were divided into two groups: FRNS (n=20) and non-FRNS (NFRNS; n=15). Fifteen children who underwent physical examination were enrolled as the control group. The change in memory B cells after GC therapy was compared between groups, and its correlation with clinical indicators was analyzed. RESULTS: Before treatment, the FRNS and NFRNS groups had significantly increased percentages of total B cells, total memory B cells, IgD+ memory B cells, and IgE+ memory B cells compared with the control group, and the FRNS group had significantly greater increases than the NFRNS group (P<0.05); the FRNS group had a significantly lower percentage of class-switched memory B cells than the NFRNS and control groups (P<0.05). After treatment, the FRNS and NFRNS groups had significant reductions in the percentages of total B cells, total memory B cells, IgM+IgD+ memory B cells, IgM+ memory B cells, IgE+ memory B cells, IgD+ memory B cells, and IgG+ memory B cells (P<0.05) and a significant increase in the percentage of class-switched memory B cells (P<0.05). The FRNS group had a significantly higher urinary protein quantification than the NFRNS and control groups (P<0.05) and a significantly lower level of albumin than the control group (P<0.05). In the FRNS group, urinary protein quantification was negatively correlated with the percentage of class-switched memory B cells and was positively correlated with the percentage of IgE+ memory B cells (P<0.05). CONCLUSIONS: Abnormal distribution of memory B cell subsets may be observed in children with FRNS, and the percentages of IgE+ memory B cells and class-switched memory B cells can be used as positive and negative correlation factors for predicting recurrence after GC therapy in these children.


Assuntos
Subpopulações de Linfócitos B , Síndrome Nefrótica , Criança , Humanos , Subpopulações de Linfócitos B/metabolismo , Imunoglobulina E , Imunoglobulina M , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/imunologia , Estudos Prospectivos , Glucocorticoides/uso terapêutico
10.
Cell Rep Med ; 4(1): 100894, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652906

RESUMO

Systemic lupus erythematosus (SLE) is characterized by increased expression of type I interferon (IFN)-regulated genes in 50%-75% of patients. We report that out of 501 patients with SLE analyzed, 73 (14%) present autoantibodies against IFNα (anti-IFN-Abs). The presence of neutralizing-anti-IFN-Abs in 4.2% of patients inversely correlates with low circulating IFNα protein levels, inhibition of IFN-I downstream gene signatures, and inactive global disease score. Hallmarks of SLE pathogenesis, including increased immature, double-negative plasmablast B cell populations and reduction in regulatory B cell (Breg) frequencies, were normalized in patients with neutralizing anti-IFN-Abs compared with other patient groups. Immunoglobulin G (IgG) purified from sera of patients with SLE with neutralizing anti-IFN-Abs impedes CpGC-driven IFNα-dependent differentiation of B cells into immature B cells and plasmablasts, thus recapitulating the neutralizing effect of anti-IFN-Abs on B cell differentiation in vitro. Our findings highlight a role for neutralizing anti-IFN-Abs in controlling SLE pathogenesis and support the use of IFN-targeting therapies in patients with SLE lacking neutralizing-anti-IFN-Abs.


Assuntos
Subpopulações de Linfócitos B , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Autoanticorpos , Subpopulações de Linfócitos B/metabolismo , Interferon-alfa/uso terapêutico , Interferon-alfa/genética , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética
11.
Arthritis Rheumatol ; 75(7): 1203-1215, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36575806

RESUMO

OBJECTIVE: Emerging evidence indicates that a distinct CD11c+T-bet+ B cell subset, termed age/autoimmune-associated B cells (ABCs), is the major pathogenic autoantibody producer in lupus. Human lupus is associated with significant metabolic alterations, but how ABCs orchestrate their typical transcription factors and metabolic programs to meet specific functional requirements is unclear. We undertook this study to characterize the metabolism of ABCs and to identify the regulators of their metabolic pathways in an effort to develop new therapies for ABC-mediated autoimmunity. METHODS: We developed a T-bet-tdTomato reporter mouse strain to trace live T-bet+ B cells and adoptively transferred CD4+ T cells from bm12 mice to induce lupus. We next sorted CD11c+tdTomato+ B cells and conducted RNA sequencing and an extracellular flux assay. A metabolic restriction to constrain ABC formation was tested in human and mouse B cells. We used a bm12-induced lupus mouse model to conduct the metabolic intervention. RESULTS: ABCs exhibited a hypermetabolic state with enhanced glycolytic capacity. The increased glycolytic rate in ABCs was promoted by interferon-γ (IFNγ) signaling. T-bet, a downstream transcription factor of IFNγ, regulated the gene program of the glycolysis pathway in ABCs by repressing the expression of Bcl6. Functionally, glycolysis restriction could impair ABC formation. The engagement of glycolysis promoted survival and terminal differentiation of antibody-secreting cells. Administration of a glycolysis inhibitor ameliorated ABC accumulation and autoantibody production in the lupus-induced bm12 mouse model. CONCLUSION: T-bet can couple immune signals and metabolic programming to establish pathogenic ABC formation and functional capacities. Modulation of ABCs favored a metabolic program that could be a novel therapeutic approach for lupus.


Assuntos
Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Autoimunidade , Proteínas com Domínio T , Subpopulações de Linfócitos B/metabolismo , Autoanticorpos , Interferon gama/metabolismo , Metabolismo Energético , Fatores de Transcrição/metabolismo
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-971056

RESUMO

OBJECTIVES@#To investigate the change in the distribution of memory B cell subsets in children with frequently relapsing nephrotic syndrome (FRNS) during the course of the disease.@*METHODS@#A total of 35 children with primary nephrotic syndrome (PNS) who attended the Department of Pediatrics of the Affiliated Hospital of Xuzhou Medical University from October 2020 to October 2021 were enrolled as subjects in this prospective study. According to the response to glucocorticoid (GC) therapy and frequency of recurrence, the children were divided into two groups: FRNS (n=20) and non-FRNS (NFRNS; n=15). Fifteen children who underwent physical examination were enrolled as the control group. The change in memory B cells after GC therapy was compared between groups, and its correlation with clinical indicators was analyzed.@*RESULTS@#Before treatment, the FRNS and NFRNS groups had significantly increased percentages of total B cells, total memory B cells, IgD+ memory B cells, and IgE+ memory B cells compared with the control group, and the FRNS group had significantly greater increases than the NFRNS group (P<0.05); the FRNS group had a significantly lower percentage of class-switched memory B cells than the NFRNS and control groups (P<0.05). After treatment, the FRNS and NFRNS groups had significant reductions in the percentages of total B cells, total memory B cells, IgM+IgD+ memory B cells, IgM+ memory B cells, IgE+ memory B cells, IgD+ memory B cells, and IgG+ memory B cells (P<0.05) and a significant increase in the percentage of class-switched memory B cells (P<0.05). The FRNS group had a significantly higher urinary protein quantification than the NFRNS and control groups (P<0.05) and a significantly lower level of albumin than the control group (P<0.05). In the FRNS group, urinary protein quantification was negatively correlated with the percentage of class-switched memory B cells and was positively correlated with the percentage of IgE+ memory B cells (P<0.05).@*CONCLUSIONS@#Abnormal distribution of memory B cell subsets may be observed in children with FRNS, and the percentages of IgE+ memory B cells and class-switched memory B cells can be used as positive and negative correlation factors for predicting recurrence after GC therapy in these children.


Assuntos
Criança , Humanos , Subpopulações de Linfócitos B/metabolismo , Imunoglobulina E , Imunoglobulina M , Síndrome Nefrótica/imunologia , Estudos Prospectivos , Glucocorticoides/uso terapêutico
13.
Sci Rep ; 12(1): 14899, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050343

RESUMO

Newborns require early generation of effective innate immunity as a primary physiological mechanism for survival. The neonatal Lin28+Let7- developmental pathway allows increased generation of Th2-type cells and B1a (B-1 B) cells compared to adult cells and long-term maintenance of these initially generated innate cells. For initial B1a cell growth from the neonatal to adult stage, Th2-type IL-5 production from ILC2s and NKT2 cells is important to increase B1a cells. The Th17 increase is dependent on extracellular bacteria, and increased bacteria leads to lower Th2-type generation. Secreted group IIA-phospholipase A2 (sPLA2-IIA) from the Pla2g2a gene can bind to gram-positive bacteria and degrade bacterial membranes, controlling microbiota in the intestine. BALB/c mice are Pla2g2a+, and express high numbers of Th2-type cells and B1a cells. C57BL/6 mice are Pla2g2a-deficient and distinct from the SLAM family, and exhibit fewer NKT2 cells and fewer B1a cells from the neonatal to adult stage. We found that loss of Pla2g2a in the BALB/c background decreased IL-5 from Th2-type ILC2s and NKT2s but increased bacterial-reactive NKT17 cells and MAIT cells, and decreased the number of early-generated B1a cells and MZ B cells and the CD4/CD8 T cell ratio. Low IL-5 by decreased Th2-type cells in Pla2g2a loss led to low early-generated B1a cell growth from the neonatal to adult stage. In anti-thymocyte/Thy-1 autoreactive µκ transgenic (ATAµκ Tg) Pla2g2a+ BALB/c background C.B17 mice generated NKT2 cells that continuously control CD1d+ B1 B cells through old aging and lost CD1d in B1 B cells generating strong B1 ATA B cell leukemia/lymphoma. Pla2g2a-deficient ATAµκTg C57BL/6 mice suppressed the initial B1a cell increase, with low/negative spontaneous leukemia/lymphoma generation. These data confirmed that the presence of Pla2g2a to control bacteria is important to allow the neonatal to adult stage. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase early generated B1a cells.


Assuntos
Subpopulações de Linfócitos B , Fosfolipases A2 do Grupo II , Imunidade Inata , Células Th2 , Animais , Subpopulações de Linfócitos B/metabolismo , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/metabolismo , Interleucina-5 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Th17 , Células Th2/metabolismo
14.
Eur J Immunol ; 52(10): 1630-1639, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35862268

RESUMO

In past years ex vivo and in vivo experimental approaches involving human naive B cells have proven fundamental for elucidation of mechanisms promoting B cell differentiation in both health and disease. For such studies, it is paramount that isolation strategies yield a population of bona fide naive B cells, i.e., B cells that are phenotypically and functionally naive, clonally non-expanded, and have non-mutated BCR variable regions. In this study different combinations of common as well as recently identified B cell markers were compared to isolate naive B cells from human peripheral blood. High-throughput BCR sequencing was performed to analyze levels of somatic hypermutation and clonal expansion. Additionally, contamination from mature mutated B cells intrinsic to each cell-sorting strategy was evaluated and how this impacts the purity of obtained populations. Our results show that current naive B cell isolation strategies harbor contamination from non-naive B cells, and use of CD27-IgD+ is adequate but can be improved by including markers for CD45RB glycosylation and IgM. The finetuning of naive B cell classification provided herein will harmonize research lines using naive B cells, and will improve B cell profiling during health and disease, e.g. during diagnosis, treatment, and vaccination strategies.


Assuntos
Subpopulações de Linfócitos B , Subpopulações de Linfócitos B/metabolismo , Separação Celular , Glicosilação , Humanos , Imunoglobulina D/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Imunoglobulina M/metabolismo , Memória Imunológica/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
15.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35670812

RESUMO

Regulatory T (Treg) cells represent a specialized lineage of suppressive CD4+ T cells whose functionality is critically dependent on their ability to migrate to and dwell in the proximity of cells they control. Here we show that continuous expression of the chemokine receptor CXCR4 in Treg cells is required for their ability to accumulate in the bone marrow (BM). Induced CXCR4 ablation in Treg cells led to their rapid depletion and consequent increase in mature B cells, foremost the B-1 subset, observed exclusively in the BM without detectable changes in plasma cells or hematopoietic stem cells or any signs of systemic or local immune activation elsewhere. Dysregulation of BM B-1 B cells was associated with a highly specific increase in IgM autoantibodies and total serum IgM levels. Thus, Treg cells control autoreactive B-1 B cells in a CXCR4-dependent manner. These findings have significant implications for understanding the regulation of B cell autoreactivity and malignancies.


Assuntos
Subpopulações de Linfócitos B , Linfócitos T Reguladores , Subpopulações de Linfócitos B/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Imunoglobulina M/metabolismo , Receptores CXCR4/metabolismo
16.
Clin Immunol ; 240: 109048, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35644520

RESUMO

Interactions between B cells and CD4+ T cells play a central role in the development of Type 1 Diabetes (T1D). Two helper cell subsets, follicular (Tfh) and peripheral (Tph) helper T cells, are increased in patients with T1D but their role in driving B cell autoimmunity is undefined. We used a personalized immune (PI) mouse model to generate human immune systems de novo from hematopoietic stem cells (HSCs) of patients with T1D or from healthy controls (HCs). Both groups developed Tfh and Tph-like cells, and those with T1D-derived immune systems demonstrated increased numbers of Tph-like and Tfh cells compared to HC-derived PI mice. T1D-derived immune systems included increased proportions of unconventional memory CD27-IgD- B cells and reduced proportions of naïve B cells compared to HC PI mice, resembling changes reported for patients with systemic lupus erythematosus. Our findings suggest that T1D HSCs are genetically programmed to produce increased proportions of T cells that promote the development of unconventional, possibly autoreactive memory B cells. PI mice provide an avenue for further understanding of the immune abnormalities that drive autoantibody pathogenesis and T1D.


Assuntos
Subpopulações de Linfócitos B , Diabetes Mellitus Tipo 1 , Animais , Autoimunidade , Subpopulações de Linfócitos B/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores
17.
Arthritis Rheumatol ; 74(9): 1556-1568, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35507291

RESUMO

OBJECTIVE: Altered composition of the B cell compartment in the pathogenesis of systemic lupus erythematosus (SLE) is characterized by expanded plasmablast and IgD-CD27- double-negative B cell populations. Previous studies showed that double-negative B cells represent a heterogeneous subset, and further characterization is needed. METHODS: We analyzed 2 independent cohorts of healthy donors and SLE patients, using a combined approach of flow cytometry (for 16 healthy donors and 28 SLE patients) and mass cytometry (for 18 healthy donors and 24 SLE patients) and targeted RNA-Seq analysis. To compare B cell subset formation during the acute immune response versus that during autoimmune disease, we investigated healthy donors at various time points after receipt of the BNT162b2 messenger RNA COVID-19 vaccine and patients with acute SARS-CoV-2 infection, using flow cytometry. RESULTS: We found that IgD-CD27+ switched and atypical IgD-CD27- memory B cells, the levels of which were increased in SLE patients, represented heterogeneous populations composed of 3 different subsets each. CXCR5+CD19intermediate , CXCR5-CD19high , and CXCR5-CD19low populations were found in the switched memory and double-negative compartments, suggesting the relatedness of IgD-CD27+ and IgD-CD27- B cells. We characterized a hitherto unknown and antigen-experienced CXCR5-CD19low subset that was enhanced in SLE patients, had a plasmablast phenotype with diminished B cell receptor responsiveness, and expressed CD38, CD95, CD71, PRDM1, XBP1, and IRF4. Levels of CXCR5-CD19low subsets were increased and correlated with plasmablast frequencies in SLE patients and in healthy donors who received BNT162b2, suggesting their interrelationship and contribution to plasmacytosis. The detection of CXCR5-CD19low B cells among both CD27+ and CD27- populations calls into question the role of CD27 as a reliable marker of B cell differentiation. CONCLUSION: Our data suggest that CXCR5-CD19low B cells are precursors of plasmablasts. Thus, cotargeting this subset may have therapeutic value in SLE.


Assuntos
Subpopulações de Linfócitos B , COVID-19 , Lúpus Eritematoso Sistêmico , Antígenos CD19/genética , Antígenos CD19/metabolismo , Subpopulações de Linfócitos B/metabolismo , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Imunoglobulina D , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Fenótipo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , SARS-CoV-2
18.
Front Immunol ; 13: 891316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572548

RESUMO

Glycosylation of CD45RB (RB+) has recently been identified to mark antigen-experienced B cells, independent of their CD27 expression. By using a novel combination of markers including CD45RB glycosylation, CD27 and IgM/IgD isotype expression we segregated human peripheral blood B cell subsets and investigated their IGHV repertoire and in vitro functionality. We observed distinct maturation stages for CD27-RB+ cells, defined by differential expression of non-switched Ig isotypes. CD27-RB+ cells, which only express IgM, were more matured in terms of Ig gene mutation levels and function as compared to CD27-RB+ cells that express both IgM and IgD or cells that were CD27-RB-. Moreover, CD27-RB+IgM+ cells already showed remarkable rigidity in IgM isotype commitment, different from CD27-RB+IgMD+ and CD27-RB- cells that still demonstrated great plasticity in B cell fate decision. Thus, glycosylation of CD45RB is indicative for antigen-primed B cells, which are, dependent on the Ig isotype, functionally distinct.


Assuntos
Subpopulações de Linfócitos B , Antígenos Comuns de Leucócito/imunologia , Subpopulações de Linfócitos B/metabolismo , Glicosilação , Humanos , Imunoglobulina D/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Imunoglobulina M/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
19.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563492

RESUMO

Animal models of autoimmunity and human genetic association studies indicate that the dysregulation of B-cell receptor (BCR) signaling is an important driver of autoimmunity. We previously showed that in circulating B cells from primary Sjögren's syndrome (pSS) patients with high systemic disease activity, protein expression of the BCR signaling molecule Bruton's tyrosine kinase (BTK) was increased and correlated with T-cell infiltration in the target organ. We hypothesized that these alterations could be driven by increased B-cell activating factor (BAFF) levels in pSS. Here, we investigated whether altered BCR signaling was already present at diagnosis and distinguished pSS from non-SS sicca patients. Using (phospho-)flow cytometry, we quantified the phosphorylation of BCR signaling molecules, and investigated BTK and BAFF receptor (BAFFR) expression in circulating B cell subsets in an inception cohort of non-SS sicca and pSS patients, as well as healthy controls (HCs). We found that both BTK protein levels and BCR signaling activity were comparable among groups. Interestingly, BAFFR expression was significantly downregulated in pSS, but not in non-SS sicca patients, compared with HCs, and correlated with pSS-associated alterations in B cell subsets. These data indicate reduced BAFFR expression as a possible sign of early B cell involvement and a diagnostic marker for pSS.


Assuntos
Receptor do Fator Ativador de Células B , Subpopulações de Linfócitos B , Receptores de Antígenos de Linfócitos B , Síndrome de Sjogren , Tirosina Quinase da Agamaglobulinemia/metabolismo , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/metabolismo , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/metabolismo
20.
Cell Rep ; 38(7): 110386, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172136

RESUMO

B-1 cell development mainly occurs via fetal and neonatal hematopoiesis and is suppressed in adult bone marrow hematopoiesis. However, little is known about the factors inhibiting B-1 cell development at the adult stage. We report that capicua (CIC) suppresses postnatal B-1a cell development and survival. CIC levels are high in B-1a cells and gradually increase in transitional B-1a (TrB-1a) cells with age. B-cell-specific Cic-null mice exhibit expansion of the B-1a cell population and a gradual increase in TrB-1a cell frequency with age but attenuated B-2 cell development. CIC deficiency enhances B cell receptor (BCR) signaling in transitional B cells and B-1a cell viability. Mechanistically, CIC-deficiency-mediated Per2 derepression upregulates Bhlhe41 levels by inhibiting CRY-mediated transcriptional repression for Bhlhe41, consequently promoting B-1a cell formation in Cic-null mice. Taken together, CIC is a key transcription factor that limits the B-1a cell population at the adult stage and balances B-1 versus B-2 cell formation.


Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Apoptose , Sequência de Bases , Medula Óssea/embriologia , Diferenciação Celular , Sobrevivência Celular , Criança , Pré-Escolar , Feto/embriologia , Células HEK293 , Humanos , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células NIH 3T3 , Receptores de Antígenos de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...